Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589957

RESUMO

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Assuntos
Anopheles , Feminino , Animais , Estações do Ano , Burkina Faso/epidemiologia , Mosquitos Vetores , Óvulo , Larva
2.
J Med Virol ; 96(2): e29437, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305059

RESUMO

Covid-19 in West Africa masked outbreaks of vaccine-preventable diseases such as the measles epidemic in children in Guinea in 2021-2022 characterized by a lack of confirmation of suspected clinical cases. During weeks 13-22 of 2022, saliva samples were collected from 213 children (3-60 months old) with measles-like symptoms within the St Gabriel dispensary in Conakry. Samples were processed in Virus Transport Medium (VTM) and tested on the same day by triplex reverse transcriptase -real-time polymerase chain reaction for Measles, Rubella and RNaseP. Samples were also tested for HHV6 and Parvovirus B19, viruses causing clinical signs similar to measles. We confirmed 146 (68.5%) measles cases, 27 (12.7%) rubella, 5 (2.3%) double-positive measles-rubella, 35 (16.4%) HHV-6 and 8 (3.75%) Parvovirus B19. To test the assay's robustness, 27 samples were kept at 26-30°C. Measles and rubella were still detected after 7 days at 26-30°C, and after 21 days measles and rubella were still detectable in all samples but one. Sequencing indicated the circulation of the B3 measles genotype, as expected in West Africa. This study highlights the robustness of the measles/rubella diagnostic test on saliva samples stored in VTM. The high level of rubella detection questioned the single valence measles vaccination strategy.


Assuntos
COVID-19 , Exantema , Herpesvirus Humano 6 , Sarampo , Parvovirus B19 Humano , Rubéola (Sarampo Alemão) , Criança , Humanos , Lactente , Pré-Escolar , Papua Nova Guiné , Anticorpos Antivirais , Imunoglobulina M , COVID-19/epidemiologia , COVID-19/complicações , Guiné , Vírus do Sarampo/genética , Parvovirus B19 Humano/genética
3.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321830

RESUMO

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malária Falciparum/prevenção & controle , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico
4.
Disaster Med Public Health Prep ; 16(5): 1817-1821, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289923

RESUMO

OBJECTIVE: Lack of mask use during large public events might spread COVID-19. It is now possible to measure this and similar public health information using publicly available webcams. We demonstrate a rapid assessment approach for measuring mask usage at a public event. METHOD: We monitored crowds at public areas in Sturgis, SD using a live, high-definition, town-sponsored video stream to analyze the prevalence of mask wearing. We developed a rapid coding procedure for mask wearing and analyzed brief (5 to 25 min) video segments to assess mask-wearing compliance in outdoor public areas. We calculated compliance estimates and compared reliability among the human coders. RESULTS: We were able to observe and quantify public behavior on the public streets. This approach rapidly estimated public health information (e.g., 512 people observed over 25 minutes with 2.3% mask usage) available on the same day. Coders produced reliable estimates across a sample of videos for counting masked users and mask-wearing proportion. Our video data is stored in Databrary.org. CONCLUSIONS: This approach has implications for disaster responses and public health. The approach is easy to use, can provide same day results, and can provide public health stakeholders with key information on public behavior.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , Máscaras , SARS-CoV-2 , Reprodutibilidade dos Testes
5.
Sci Rep ; 11(1): 17569, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475470

RESUMO

The decline in malaria across Africa has been largely attributed to vector control using long-lasting insecticidal nets (LLINs). However, this intervention has prompted widespread insecticide resistance (IR) and been associated with changes in mosquito behaviour that reduce their contact with LLINs. The relative importance and rate at which IR and behavioural adaptations emerge are poorly understood. We conducted surveillance of mosquito behaviour and IR at 12 sites in Burkina Faso to assess the magnitude and temporal dynamics of insecticide, biting and resting behaviours in vectors in the 2-year period following mass LLIN distribution. Insecticide resistance was present in all vector populations and increased rapidly over the study period. In contrast, no longitudinal shifts in LLIN-avoidance behaviours (earlier or outdoor biting and resting) were detected. There was a moderate but statistically significant shift in vector species composition from Anopheles coluzzii to Anopheles gambiae which coincided with a reduction in the proportion of bites preventable by LLINs; possibly driven by between-species variation in behaviour. These findings indicate that adaptations based on insecticide resistance arise and intensify more rapidly than behavioural shifts within mosquito vectors. However, longitudinal shifts in mosquito vector species composition were evident within 2 years following a mass LLIN distribution. This ecological shift was characterized by a significant increase in the exophagic species (An. gambiae) and coincided with a predicted decline in the degree of protection expected from LLINs. Although human exposure fell through the study period due to reducing vector densities and infection rates, such ecological shifts in vector species along with insecticide resistance were likely to have eroded the efficacy of LLINs. While both adaptations impact malaria control, the rapid increase of the former indicates this strategy develops more quickly in response to selection from LLINS. However, interventions targeting both resistance strategies will be needed.


Assuntos
Adaptação Fisiológica , Mordeduras e Picadas/parasitologia , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Animais , Anopheles , Burkina Faso/epidemiologia , Feminino , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia
6.
Malar J ; 18(1): 386, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791336

RESUMO

BACKGROUND: Measuring human exposure to mosquito bites is a crucial component of vector-borne disease surveillance. For malaria vectors, the human landing catch (HLC) remains the gold standard for direct estimation of exposure. This method, however, is controversial since participants risk exposure to potentially infected mosquito bites. Recently an exposure-free mosquito electrocuting trap (MET) was developed to provide a safer alternative to the HLC. Early prototypes of the MET performed well in Tanzania but have yet to be tested in West Africa, where malaria vector species composition, ecology and behaviour are different. The performance of the MET relative to HLC for characterizing mosquito vector population dynamics and biting behaviour in Burkina Faso was evaluated. METHODS: A longitudinal study was initiated within 12 villages in Burkina Faso in October 2016. Host-seeking mosquitoes were sampled monthly using HLC and MET collections over 14 months. Collections were made at 4 households on each night, with METs deployed inside and outside at 2 houses, and HLC inside and outside at another two. Malaria vector abundance, species composition, sporozoite rate and location of biting (indoor versus outdoor) were recorded. RESULTS: In total, 41,800 mosquitoes were collected over 324 sampling nights, with the major malaria vector being Anopheles gambiae sensu lato (s.l.) complex. Overall the MET caught fewer An. gambiae s.l. than the HLC (mean predicted number of 0.78 versus 1.82 indoors, and 1.05 versus 2.04 outdoors). However, MET collections gave a consistent representation of seasonal dynamics in vector populations, species composition, biting behaviour (location and time) and malaria infection rates relative to HLC. As the relative performance of the MET was somewhat higher in outdoor versus indoor settings, this trapping method slightly underestimated the proportion of bites preventable by LLINs compared to the HLC (MET = 82.08%; HLC = 87.19%). CONCLUSIONS: The MET collected proportionately fewer mosquitoes than the HLC. However, estimates of An. gambiae s.l. density in METs were highly correlated with HLC. Thus, although less sensitive, the MET is a safer alternative than the HLC. Its use is recommended particularly for sampling vectors in outdoor environments where it is most sensitive.


Assuntos
Anopheles , Controle de Mosquitos/instrumentação , Mosquitos Vetores , Animais , Burkina Faso , Feminino , Estudos Longitudinais , Malária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...